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SUMMARY 
The aim of the present study is to examine the accuracy and improvement of various numerical methods 
in the solution of the transonic shock/turbulent boundary layer interaction problem and to show that a 
significant source of numerical inaccuracies in turbulent flows is not only the inadequacy of the turbulence 
model but also the numerical discretization. Comparisons between a Riemann solver and a flux-vector- 
splitting method as well as between various numerical high-order extrapolation schemes with corresponding 
experimental results are presented. 
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1.  INTRODUCTION 

Transonic viscous flow, where the interaction of a shock wave and a boundary layer often leads 
to extremely detrimental effects, has been studied for several years. Considerable advances have 
been made in the calculation of the pressure distribution over a body surface where the 
shock/boundary layer interaction occurs. However, the accuracy of the numerical predictions 
deteriorates as the interaction strengthens and boundary layer separation occurs. In order to 
accurately predict the viscous flow behaviour, the correct shock position must be obtained, since 
the shock position is closely coupled to the viscous flow under separation conditions.' The 
interaction between a shock wave and a boundary layer often amplifies the viscous effects to 
such an extent that the real flow may differ markedly from the perfect fluid model frequently 
used to define the shape of the body.' 

Transonic turbulent separated flows over a bump geometry have been investigated in the 
past.'-5 In Reference 1 a comparison of experimental results with numerical solutions obtained 
using the algebraic Cebeci-Smith model and the two-equation k - o  turbulence model of Wilcox 
and Rubesin showed that 'the more sophisticated two-equation formulation does not predict 
substantially different flow behaviour than that predicted with the simple algebraic eddy viscosity 
model. The numerical solutions delivered poor predictions of the shock location. The same 
transonic turbulent flow has been studied3 by other authors using a k--E model and the 
Beam-Warming finite difference scheme for the discretization of the fluxes. An improvement in 
the prediction of the shock location was achieved, but the inaccuracies in the separation region 
after the shock wave were larger than the corresponding results of Reference 1. Improvements 
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in the above flow simulation have also been achieved by Goldberg and c o - w o r k e r ~ ~ ' ~  using a 
new back-flow turbulence model. 

A significant reason for the inaccuracies is certainly the turbulence models used in the 
simulation and it is well known that major improvements are still needed in turbulence modelling 
before the shock/boundary layer interaction can be reliably treated theoretically.6 In the present 
study another aspect is discussed regarding the accuracy and reliability of the prediction of the 
above physical problem. A question originating from the numerical research is: is the source of 
the inaccuracies in such complex flows always the turbulence closure models or can the 
discretization scheme significantly influence the resolution of the physical problem? 

During the last two decades, several numerical methods have been developed for the solution 
of the compressible Euler and Navier-Stokes equations. Among these, flux-vector-splitting 
(FVS),7-9 flux-difference-splitting (FDS)" and TVD' ' methods have shown very good perfor- 
mance for inviscid flows. In the case of FVS methods, inaccuracies have been observed in viscous 
flow calculations. The investigation of flux formulae for laminar flows has been carried out in 
the past for benchmark test cases.12*13 According to the work of van Leer et al.," the first-order 
Roe FDS scheme is more accurate in the boundary layer than the first-order van Leer FVS 
scheme. van Leer et al. l 2  also observed that using MUSCL interpolation, the FVS method 
showed a clear improvement in the representation of the boundary layer, but comparison with 
the simple explicit MacCormack scheme showed that the latter remains better than FVS on a 
medium-fine grid. Modifications and improvements of van Leer splitting have been presented 
in References 13-15 for laminar viscous flows. 

In order to validate and further improve the flux-splitting schemes, a modified Steger-Warm- 
ing FVS method and a Riemann solverI6 are validated in the present paper for a turbulent flow 
when a shock/boundary layer interaction occurs. For high-order extrapolation the MUSCL' 
and a five-point extrapolation scheme were employed. Using five-point extrapolation, the 
accuracy of the FVS method is improved and the method provides similar performance to the 
Riemann solver. A numerical investigation is also presented on the accuracy of the extrapolation 
schemes used for the definition of variables on the cell faces. In some cases the extrapolation 
schemes significantly influence the numerical prediction of the turbulent transonic flow as shown 
in the present results. The numerical investigation was conducted on the prediction of pressure 
distribution, velocity and turbulent shear stress profiles in the boundary layer. 

2. MATHEMATICAL MODELLING 

The complete set of axisymmetric Navier-Stokes equations can be written as follows for a general 
non-orthogonal curvilinear co-ordinate system using the conservative variables as primitive 
variables: 

G + G -  
Z 

( J Q ) ,  + E ,  + G, + J ~ - -- 
Z Re 

The unknown solution vector Q and the flux vectors are written as 
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Body-fitted arbitrary co-ordinates (5 ,  [) are used, while J = xCzr - xrzC is the Jacobian of the 
transformation 5 = <(x, z )  and [ = [(x, z )  from Cartesian co-ordinates (x,  z)  to generalized 
co-ordinates ( 5 ,  [). Using the above transformation, the equations are solved in a computational 
plane with A5 = 1 and A< = 1.  The subscripts 5,  [, x and z denote partial derivatives, except for 
the stresses txx, txz, T ~ ,  and tzz and the heat terms qx and 4,.  The stresses and heat terms are 
given as 

T,, = - ~ p( -224, + WJ - - P -, 
2 2 w  2 2 w  
3 3 z  3 3 z  

tzz = - - p(ux - 2wz) - ~ p -, t,, = trx = p(wx + uz), 

t oo  = $ ~ ( w / z )  - $p(du/dx + J w / ~ z ) ,  

Here u and w are the Cartesian velocity components in the x- and z-directions respectively, p 
is the density, p is the pressure and e is the total energy per unit volume. The total energy is 
defined as 

e = pi + 0.5p(uz + w z ) ,  (2)  
where i represents the specific internal energy. Re, Pr, ,  Pr, ,  p,. and pt are the Reynolds number, 
the laminar Prandtl number (Pr ,  = 0.7), the turbulent Prandtl number (Pr,  = 0.9) and the laminar 
and turbulent viscosities respectively. The turbulent eddy viscosity is determined from an 
algebraic turbulence model (see below), while the diminsionless laminar viscosity is defined by 
the Sutherland law as 

110.4/To + 1 
1104/To + T 

T3I2, PI = 

where To is the temperature 
and turbulent viscosities: 

of dimensionalization. The viscosity p is the sum of the laminar 
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The system of Navier-Stokes equations is completed by an equation of state. In the present 
study the perfect gas equation of state is used: 

(4) 

where y = 1.4 is the ratio of the specific heats. 
For the solution of the Navier-Stokes equations various finite volume numerical methods 

have been developed and incorporated into one computational code. For the discretization of 
the inviscid fluxes the computational code uses either a Riemann solver16 or a modified 
Steger-Warming FVS method. A description of the methods is given in Appendix 1. A high 
order of accuracy is obtained using high-order extrapolation schemes for the calculation of the 
conservative variables on the cell faces. The extrapolation schemes used in the present study are 
the well-known MUSCL" and a five-point scheme. A description of the extrapolation schemes 
is given in Appendix 11. Using high-order extrapolation, the accuracy of the discretization of 
fluxes is not globally increased. This means that the present Riemann solver and FVS method 
are second-order-accurate methods using either a third-order or a first-order extrapolation 
scheme. However, the order of accuracy of the extrapolation is decisive in representing 
accurately the boundary layer. 

In the past inaccuracies in viscous calculations using FVS methods have been observed by 
several  author^.'^^'^" 5*18*19 MacCormack and Candler" have shown that the inaccuracies of 
the Steger-Warming FVS method are caused by the large numerical mixing of the fluid in the 
boundary layers, where a fictitious pressure gradient is developed. Koren" has also observed 
that Osher's upwind method gives more accurate results in the boundary layers than does van 
Leer's FVS. Our experience from inviscid and laminar viscous flows is that the present modified 
Steger-Warming FVS method and the Riemann solver predict with high reliability the flow 
behaviour using the third-order five-point scheme.' 5*20 Pure second-order extrapolation (with- 
out sensor functions) and the MUSCL scheme yield inaccuracies in laminar viscous flows. In 
the following paragraphs the accuracy of the FVS method and the Riemann solver as well as 
the improvement of the FVS method are examined for the shock/turbulent boundary layer 
interaction problem. 

The solution of the system of Navier-Stokes equations is obtained by an implicit unfactored 
method using Gauss-Seidel relaxation.21 The unfactored implicit solution is followed by a 
Newton method constructing a sequence of approximations qv such that lim q' + Qn'l, where 
v is the subiteration state. A Newton form is obtained by linearization of equation (1) around the 
known subiteration state v as follows: 

P = P(Y - l)i, 

Aq" ' Q" - 
At At J -  + (A"Aq'+ ')< + (C~~;vAq'+ ' )c  = J ____ - RHS, 

( 5 )  
1 

RHS = EF + G f - - ( R F +  S;) + -  C + 
Re "( Z Re Re 

The solution at the subiteration level v + 1 is updated as 

q V + l  = qV + 

Four Gauss-Seidel relaxation sweeps are applied on the left-hand side of equation (5) while 
holding the RHS constant, at the same time one and two Newton subiterations are used for the 
Euler and Navier-Stokes equations respectively. On the left-hand side of equation (5) the thin 
layer viscous Jacobian C:?;" is used for steady state calculations instead of the full viscous 
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Jacobian, thus saving computational time. The axisymmetric terms of the equations are 
calculated explicitly. This treatment does not introduce stability problems in the convergence, 
as has been proven by numerical experiments on various mesh sizes. 

3. TURBULENCE MODEL 

One of the conclusions in the paper of Johnson et al.' was that although the two-equation 
formulation is more sophisticated than the eddy viscosity model, it does not predict substantially 
different flow behavior. In Reference 3 a comparison between the algebraic Baldwin-Lomax 
model and the k--E two-equation model has shown that the former predicts sharp increases and 
decreases in the turbulent shear stress while the latter predicts gradual changes in the turbulent 
quantities. However, in the two-equation formulation either the shock position did not agree 
with the experimental results or the pressure was overpredicted downstream of the shock wave 
in the separation region. The reason for the differences between the numerical and experimental 
results was reported as inaccuracies of the turbulence models rather than any deficiencies of the 
experimental data or the computational mesh. 

In the present work we examine the accuracy of an FVS method and a Riemann solver 
in the resolution of turbulent flows using as a turbulence model the Baldwin-Lomax eddy 
viscosity model,22 which is widely used in the aerodynamic community. This model is 
similar to the Cebeci-Smith model but avoids the necessity of finding the edge of the boundary 
layer. 

4. DESCRIPTION OF THE TRANSONIC TURBULENT FLOW 

4. I Axisymmetric geometry and computational grids 

A schematic diagram of the model and its associated flow field is shown in Figure l(a). The 
model consists of an annular circular arc bump joined to a thin-walled cylinder of outer diameter 
15.2 cm.' The bump has a thickness of 1.9 cm and a chord length of 20.3 cm. Its leading edge is 
joined to the cylinder by a smooth circular arc of radius 18.3 cm which is tangent to the cylinder 
at 3-33 cm upstream and to the bump at 2.05 cm downstream of the intersection of the arc of 
the bump and the cylinder.' The test conditions of the experiment were a freestream Mach 
number M ,  = 0.875 and a unit Reynolds number Re/m = 13.6 x lo6 m-'. With the long initial 
section of the model and this unit Reynolds number a fully developed turbulent boundary layer 
was ensured without implementation of a transition strip as reported in Reference 1. A shock 
wave is formed in the flow field and a separated region is induced by the shock wave. Various sizes 
of computational grids have been developed in each co-ordinate direction in order to check the 
influence of the grid on the numerical prediction. The grid sizes used are 82 x 42, 82 x 82 and 
162 x 82. Normal to the flow direction an exponentially stretched fine point spacing was used 
to resolve the part of the flow where viscous effects are important. The distance of the first mesh 
line from the boundary was selected so that the minimum y +  is about 0.3. Using such a small 
distance, the results are independent of this spacing. When 42 and 82 grid points are used in 
the normal direction, 35 and 62 points are contained in the viscous layer respectively. The 
boundaries of the computational mesh are extended 80.3 cm upstream of the bump leading edge 
and 101.5cm downstream of the bump trailing edge. For the outer boundary numerical 
experiments have been conducted to ensure that the outer distance does not influence the flow 
field. It has been found that the shock wave and separation region remained unchanged when 
the distance of the outer boundary was greater than 2.5 chords from the solid wall. The present 
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Figure 1 .  Shock wave/turbulent boundary layer interaction problem: (a) model geometry; (b) enlargement of the 162 x 82 
grid over the geometry 

solutions are for an outer boundary located at 3 chords from the solid wall. An enlargement of 
the finest computational mesh (162 x 82) over the bump is shown in Figure l(b). 

4.2 Boundary conditions 

At the upstream boundary, freestream boundary conditions are specified. The downstream 
boundary is positioned far enough away from the interaction region that all gradients in the 
flow direction can be set equal to zero. No-slip boundary conditions are prescribed on the solid 
wall and a constant temperature wall is considered. At the outer boundary, calculations using 
freestream boundary conditions and inviscid solid wall boundary conditions have been com- 
pared. The numerical experiments showed that the flow remained unchanged using either the 
first or second type of the above boundary conditions. The upwind extrapolation scheme uses 
five computational volumes for the definition of the conservative variables at the cell faces. 
Fictitious volumes into the solid wall are used in order to define the conservative variables at 
the solid boundary. These volumes are calculated by extrapolation of the values from the inner 
flow field. 

5. NUMERICAL PREDICTIONS OF THE HIGHER-ORDER METHODS 

In the following subsections, comparisons between various computational methods and experi- 
mental results' are presented. Numerical predictions are presented for the pressure, velocity 
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and turbulent shear stress profiles and the skin friction distribution. A physical picture of the 
flow field is shown in Figures 2(a) and 2(b), where the iso-Mach lines and the velocity vectors 
have been plotted. From these figures the formation of the shock wave and the interaction with 
the boundary layer can be observed. In addition, the velocity vectors show the deceleration of 
the flow in the region of the shock and the formation of the separation region. Reattachment 
occurs downstream of the trailing edge of the bump. It is noted that the velocity vectors have 
been plotted every eight volumes of the computational mesh in order to be observable in the 
separation region. 

- - - -  --- - 
- - - -  
- - - -  
- - - - - - - - - - - - 
m 

(b)  

Figure 2. (a) Iso-Mach lines and (b) velocity vectors over the bump 
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5.1. Pressure distribution 

The prediction of the correct pressure distribution on the surface of a body under transonic 
flow conditions is of crucial importance for the determination of the lift and moment. Visualiza- 
tion from experimental results and examination of wall pressure distributions’ have shown that 
the interaction domain can be divided into two regions. The first region is the most upstream 
part of the interaction where a continuous and rapid compression of supersonic nature occurs. 
The second region is downstream of the shock wave and is of subsonic nature. The flow structure 
results from the effect far downstream and the shape and curvature of the wall. Considering the 
above, it is concluded that the behaviour of the shock-boundary layer interaction phenomenon 
is dependent on the first region of supersonic nature. 

The calculation of the pressure distribution and the determination of the correct shock position 
are connected with the maximum Mach number before the shock wave.’ In Figures 3(at3(d) 
comparisons between the present numerical predictions and experimental results’ are presented. 
In detail, Figures 3(a) and 3(b) show comparisons for various grid sizes using the Riemann solver 
and the third-order hybrid scheme. The pressure distribution seems to remain almost unchanged 
with increasing grid size. The results show that the pressure is captured very well downstream 
of the shock wave in the separated region. Small discrepancies are seen in the capturing of the 
shock position as well as a slightly lower pressure value before the shock wave. The same 
behaviour exists when the FVS method with the third-order upwind or the FVS method with 
the MUSCL scheme is used in the calculations (Figure 3(c)). On the other hand, comparisons 
(Figures 3(a) and 3(b)) of the present results with the corresponding pressure predictions of 
References 1 and 3 show that the present predictions are in general closer to the experimental 
results. 

The differences between the present numerical procedures and the procedures of References 
1 and 3 are the numerical methods for discretization of the equations as well as the turbulence 
models. The present algebraic model is theoretically less sophisticated than the k-w and k--E 
models of References 1 and 3. From these results it is clear that the only reason for the better 
present pressure prediction is the numerical method. In addition, the order of accuracy of the 
upwind extrapolation seems to influence the pressure prediction (Figure 3(d)). First-order 
accuracy causes inaccuracies in the determination of the shock positions as well as overprediction 
of the pressure in the separated region, while second- and third-order schemes present similar 
behaviour. It is important to note that in Reference 3 the calculations have also been conducted 
using the Baldwin-Lomax turbulence model, but the present results using the same model are 
in better agreement with the experimental results. Comparisons of these calculations with the 
present results are shown in Figure 3(a)). 

The situation of shock-induced separation occurs when the maximum Mach number in front 
of the shock is about 1.3. The slightly lower pressure value in the present results compared with 
the experiment can be explained by the presence of a higher Mach number than the experimental 
one ( M  = 1.32) in the supersonic region. The present predictions calculate the Mach number 
just upstream of the shock to be M = 1.3224. This prediction is very close to the experimental 
value ( M  = 1.32). The numerical prediction of Reference 1 using the k-w and Cebeci-Smith 
model was approximately M = 1.4. 

5.2 Numerical predictions of velocity profiles 

Several comparisons between numerical predictions and experimental results have been 
obtained for the velocity profiles. Initially, calculations were carried out using the Riemann 
solver in combination with first-, second- and third-order-accurate extrapolation schemes. 
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Figure 3. Surface pressure distributions: (a) present results on 82 x 82 and 82 x 42 grids and numerical predictions of 
Sahu and Danberg3 (b) present results on 162 x 82 and 82 x 82 grids and numerical predictions of Johnson et a/.;’ 
(c) present predictions using the FVS method; (d) present predictions using first-, second- and third-order-accurate 
Riemann solver (B-L: Baldwin-Lomax model; C-S: Cebeci-Smith model; W-R: Wilcox-Rubesin (k-w) model) 

Comparisons of the numerical predictions with the corresponding experimental results are 
presented in Figures 4 and 5, while in Figures 6 and 7 comparisons between various grid sizes 
using the third-order ‘version’ of the Riemann solver are presented. In Figures 4, 5 6  and 7 U, is 
the freestream velocity. The velocity profiles are compared for various grid stations in the 
separation region and after the reattachment. For the experimental positions x/c = 1.25 and 
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Figure 4. Comparisons of velocity profiles between numerical predictions using the third- and first-order Riemann solver 
and experimental results 

1.375 the profiles have been plotted for two different grid stations in order to avoid interpolation 
between the present grid positions. At the other stations the grid position coincided within 1% 
with the corresponding experimental one. For the sake of clarity the profiles for the second-order 
extrapolation scheme (Figure 5 )  are plotted separately from the corresponding ones of the 
third- and first-order schemes. In accordance with the above plots, using the third-order 'version' 
of the Riemann solver, the numerical predictions for the velocity profiles are in satisfactory 
agreement with the experiments. It is evident that the first-order scheme leads to misprediction 
of the velocity profile. The inaccuracies introduced by the first-order scheme are significantly 
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Figure 4. (continued) 

greater in the separation region (see stations x/c = 0.875, 0.938, 
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395 

1.0 and 1.062). The first-order 
scheme does not predict the change in the curve of the velocity profile and predicts only negative 
velocity values in the separation region with a smooth transition up to the positive values of 
the outer freestream. On the other hand, using the second-order extrapolation, the results do 
not differ from the corresponding ones using the third-order scheme, predicting the turbulent 
boundary layer with satisfactory accuracy. 

The above comparisons are for the 82 x 82 grid. Comparisons with the finer (162 x 82) and 
coarser (82 x 42) grids in Figures 6 and 7 show the dependence of the profiles on the grid size. 
In detail, the results on the finer grid do not show significant differences from the 82 x 82 grid. 
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Figure 5. Comparisons of velocity profiles between numerical predictions using second-order Riemann solver and 
experimental results 

All the observable small differences occur in regions of the curve of the profiles. Similar differences 
in the curve of the profiles are also evident by comparing the results between the 82 x 42 and 
82 x 82 grids (Figure 7). In conclusion, we can say that both the 162 x 82 and 82 x 82 grids 
capture the velocity distribution satisfactorily in the turbulent boundary layer. 

The same calculations have also been conducted for the FVS method in combination with 
the third-order scheme as well as with the MUSCL scheme. In order to limit the size of the 
paper, results are presented only for the FVS-third-order and FVS-MUSCL methods on the 
82 x 82 grid (Figure 8). It is important for the reader to note that numerical experiments 
have also been carried out using different versions of the MUSCL scheme (fully upwinded, 
symmetric, third-order-biased and centred). Differences were not observed using the various 
versions of the scheme. Comparisons between the third-order and MUSCL schemes show that 
the former predicts the velocity distributions in closer agreement with experiment. This is true 
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Figure 5. (continued) 

for all stations of the comparisons except for the station x/c = 0.75 just downstream of the shock 
wave and after the beginning of separation. In this position the MUSCL scheme predicts higher 
velocities in the region of high curvature of the velocity profile. Comparisons of the profiles in 
Figures 4 and 8 show that the FVS-third-order method and the Riemann solver with third-order 
extrapolation yield similar behaviour in the prediction of velocity distributions in the turbulent 
boundary layer. 

The present results have also been compared with the numerical predictions of References 1 
and 3. In order to limit the size of the paper, we do not present additional figures with a direct 
comparison. On the other hand, observations on the present results and those of References 1 
and 3 can be made. From these observations it can be concluded that although the eddy viscosity 
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Figure 6. Comparisons of velocity profiles between numerical predictions using 162 x 82 and 82 x 82 grids and 
experimental results 
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Figure 7. Comparisons of velocity profiles between numerical predictions using 82 x 82 and 82 x 42 grids and 
experimental results 
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model was used in the present work, the results for the velocity profiles are generally in better 
agreement with the experiment than the corresponding ones of References 1 and 3. In detail (see 
also References 1 and 3), the Baldwin-Lomax turbulence model of Reference 3 predicts 
significantly worse results than those of the present calculations. In addition, although the k--E 
model of Reference 3 improves the velocity predictions, the results have larger differences than 
the present corresponding results. Our conclusion is that the closer agreement of the present 
results with the experiment is due to the ‘high-order’ upwind methods when the less sophisticated 
eddy viscosity model is used. The basic conclusions on the numerical methods used in the above 
calculations will be summarized at the end of the paper. 

5.3 Numerical predictions of the turbulent shear stress 

In the previous subsections the accuracy of the higher-order methods with regard to the 
pressure distribution, velocity profiles and prediction of the shock values (pressure rise, Mach 
number just upstream of the shock) has been examined. Before the development of more 
sophisticated turbulence models, a comprehensive evaluation of the accuracy of the numerical 
methods for all flow quantities is necessary. The literature on compressible flows contains a 
limited number of comprehensive studies on the numerical accuracy of methods that have been 
developed or extended in the last decade to turbulent compressible flows. On the other hand, 
there are several articles that elaborate the accuracy and improvement of methods for shock 
waves. In the field of transonic turbulent flows, comparisons between various computational 
codes have been presented in a viscous transonic aerofoil ~ o r k s h o p . ’ ~  One of the conclusions 
of the above workshop was that more complete experiments for validation of CFD codes are 
needed in order to help the development of turbulence models and to more completely validate 
the physical and numerical model errors associated with CFD computer codes. 

In order to further evaluate the reliability of the Riemann solver, FVS method and extrapola- 
tion schemes, comparisons between numerical predictions and experimental results for the 
turbulent shear stress are shown. It is necessary to note that the significance of the turbulence 
modelling for the resolution of such quantities cannot be ignored. Our intention is only to 
evaluate the order of the inaccuracies introduced by the higher-order methods in the cal- 
culation of turbulent flow quantities. The numerical predictions for the turbulent shear stress 
and comparison between the present methods are shown in Figure 9. The results are for the 
162 x 82 grid. During the development of the present study, numerical experiments on the 
82 x 82 grid were carried out, but only small differences from the 162 x 82 grid results were 
observed. 

The first observation from Figure 9 is that although the predictions are relatively close to 
the experiments in the positions just before and after the separation (stations x/c = 0.688, 0.75 
and 0.813), differences exist in the remaining positions. In these regions the methods cannot 
capture large rises of the shear stress into the turbulent layer. Another observation is that the 
numerical methods used predict a different rise of the turbulent shear stress. The FVS method 
with third-order extrapolation seems to predict higher shear stresses than the MUSCL scheme. 
The Riemann solver with third-order extrapolation yields results closer to the FVS-third-order 
scheme. The location of the peak shifts further away from the wall and is captured better when 
the FVS method with third-order extrapolation is used. In Figure 10 comparisons of the results 
using the different-order extrapolation schemes are shown. The third- and second-order-accurate 
schemes present small differences. On the other hand, larger inaccuracies are shown using the 
first-order extrapolation scheme. 
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Figure 8. Comparisons of velocity profiles between numerical predictions using FVS-third-order and FVS-MUSCL 
schemes and experimental results 
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Figure 9. (continued) 

Table 1. Comparisons between present predictions and experimental data for 
separation and reattachment positions 

Separation position Reattachment position 

Experiment x/c z 0.7 x/c % 1.10 
Riemann solver-third-order X/C = 0.689877 X/C = 1.152 
Riemann solver-second-order X/C = 0.689876 X/C = 1.152 
Riemann solver-first-order X/C = 0.73 1205 XJC = 1.044 

FVS method-MUSCL X/C = 0.689876 x/c = 1.152 
FVS method-third-order X/C = 0.689876 x/c = 1.188 

The differences between the calculations and the experiments for the turbulent shear stress 
prediction can only be explained by the inaccuracies introduced by the turbulence model. The 
present shear stress predictions are in close agreement with those of Reference 3 where the k--E 
model was used. In addition, the present results are in better qualitative agreement with the 
experiments than those of Reference 3 obtained using the Baldwin-Lomax model. The explana- 
tion of the latter is the higher accuracy offered by the present numerical methods. 

In Figure 11 the skin friction distribution for various grid sizes is shown. The results are 
Riemann solver predictions. The experimental results predict separation at the position 
x/c z 0.7 and reattachment at the position x/c x = 1.10. The present numerical predictions are 
given in Table I. The results show satisfactory agreement with the experimental values. 
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6. CONCLUSIONS 

In the present work the accuracy of flux formulae in the prediction of shock/turbulent boundary 
layer interaction was examined. The basic conclusions from the present study are as follows. 

1. The five-point scheme gives closer agreement with the experimental results than the 
MUSCL scheme. Five-point extrapolation improves the performance of the FVS method. 

2. The third-order five-point scheme does not show significant differences from the second- 
order scheme. Large inaccuracies are introduced by the first-order scheme. 

3. The FVS method and the Riemann solver show similar behaviour in the prediction of the 
turbulent flow. 

4. The present predictions for the pressure and velocity distribution are in close agreement 
with the experimental results even though an algebraic turbulence model is used. The shock 
wave is captured close to the experimental measurements. The velocity profile predictions 
generally show better agreement with the experiments than the corresponding predictions 
in the literature. 

5 .  The present predictions for the turbulent shear stress show similar behaviour to the corre- 
sponding prediction in the literature. The present results are in close agreement with the 
numerical results of Reference 3 when the k--E model is used. In addition, using the Baldwin- 
Lomax model, the present results show closer agreement with the experimental results for 
the turbulent shear stress than the results of Reference 3 where the same model is used. 

The investigation of new numerical methods for compressible flows (based on the Boltzmann 
approach) as well as turbulence models other than the present one is intended to be validated 
in turbulent transonic flows in order to improve the numerical resolution of such complex flows. 
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APPENDIX I: RIEMANN SOLVER AND FVS METHOD 

Riemann solver' 

The first method for the discretization of the inviscid fluxes is a finite volume Riemann solver.'6 

(6)  

(7) 

The method is constructed by splitting the Euler equations into two one-dimensional equations 

(JQ),  + E ,  = 0, 

( J Q ) ,  + G, = 0. 
The Riemann solver defines the conservative variables on the cell faces as a function of the 
corresponding conservative variables at the characteristics (denoted by the index j = 0, 1,2). The 
conservative variables used for the discretization of the inviscid flux E in equation (6) (similarly 
the flux G in equation (7)) are defined as16 

P = Po + R, + R , ,  
1 = I ,  + (U + G ) R ,  + (U - sZ)R,, 

n = no + (w + s.?)R, + (w - sz")R,, 

e = eo + (H + sAo)R1 + (H - sA,)R,. 

(8) 
(9) 

(10) 

(11) 
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The terms R ,  and R, are defined as 

R ,  = & [(Po - ,,,(sA, - 2 - + ( I ,  - I 1 ) [ ( ) J  - 1)u - sZ] 

- 
4 2 )  + ( I ,  - I,)[(y - 1)u + s q  

where 

while I,, L l ,  and A, are the eigenvalues defined as 

A0 = u.? + wz, A1 = 10 + s, I ,  = 20 - s, (15) 

where s is the speed of sound. The terms pi, l j  = ( P U ) ~ ,  nj  = ( P W ) ~  and ej with j = 0, 1,2  are the 
characteristic conservative variables. Similarly, the conservative variables can be defined for the 
inviscid flux G. 

The characteristic conservative variables on the cell faces are calculated from the left or right 
side of the cell face in accordance with the sign of the eigenvalues (Godunov-type differencing): 

Qi+,,, = i{[l + ~ign(A~)]Q,:+~/, + [l  - ~ign(A~)]Q:+~,,} f o r j  = 0, 1, 2. (16) 

Modified Steger- Warming flux-vector-splitting (FVS) method 

The modified FVS method splits the flux Ei+l12 (similarly the fluxes Gk+1/2 and Gk-l/2) on 
the cell face i + 1/2 instead of on the centre of the volume for higher accuracy in the boundary 
layers: 

Ei+ 112 = El+ 1/2 + Ei- 1/2-  (17) 

The original Steger-Warming FVS method’ causes large numerical diffusion as well as entropy 
errors in some flow regions. Improvement of the method is obtained by modification of the 
eigenvalue splitting. Because at vanishing zeroth eigenvalue the mass flux is not differentiable 
and FVS cannot be applied, the zeroth eigenvalue is split as a function of the first and second 
eigenvalues: 

The second modification concerns the definition of the energy term of the split fluxes. A negative 
influence of FVS method on the conservation of total enthalpy emerges by the formulation of 



412 D. DRlKAKlS AND F. DURST 

the energy flux. Improvement is obtained by discretization of the energy flux in terms of the 
total enthalpy H. Finally the convective flux is defined as 

+(A: + A;) 

where 

l j  * Vjl 
=- f o r j  = 1, 2. 

2 I 

APPENDIX 11: HIGH-ORDER EXTRAPOLATION SCHEMES 

Fiue-po in t extrapolation scheme 

The left and right states of conservative variables on the cell faces are defined by a hybrid 
upwind scheme. This is a five-point scheme constructed by superposition of the first-, second-, 
third- and fourth-order extrapolation formulae asI6 

Q?+ i / z  = AQ!;:,, + (1 - A){BQ?ii/z + (1 - B)CCQ?i:/z + (1 - C)Q%(;i/zI}. (21) 

The superscripts 1-4 denote the orders of the extrapolation. For instance, the third- and 
fourth-order extrapolations are defined respectively as 

(Q?+ I / z ) -  = k(5Qi - Q i -  1 + 2Qi+ 11, (Q?+ 112)' = &5Qi+ I - Q i + 2  + 2Qih 

(Q?+ 112)- = (Q?+ 1/2)+  = h(7Qi + 7Qi+ 1 - Q i -  1 - Qi+2).  

The terms A and B are limiter functions defined by the squares of the second-order derivatives 
of pressure: 

B = min(1, bIP;<,i+l + pf<,iI). 2 A = min(1, aI&,i+l  - pc<.iI), 

The values of the constants a and b in the last relations are a = 4.5 and b = 2.5, while the 
constant C in (21) is C = 2.25 for the fourth-order scheme and C = 1 for third-order accuracy. 
If the parameter b has large values, the scheme switches to second-order accuracy. 

MUSCL scheme 

The second class of upwind extrapolation schemes which are implemented in the present work 
is the monotone upstream centred scheme for conservation law (MUSCL)." The conservative 
variables using the MUSCL scheme are defined as 

S .  
4 Qi+1/2 = Qi + [(l - kSJV + ( 1  + kSi)A]Qi, (22a) 
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with AQi = Q i + ,  - Qi and VQi = Qi - Qi- 
detection of shocks and other discontinuities: 

S is the van Albada limiter function for the 

where E is a small number ( E  = in order to prevent division by zero. The spatial 
accuracy depends on the parameter k: k = - 1 produces a fully upwinded, k = 0 a symmetric, 
k = f a third-order-biased and k = 1 a centred scheme. 

Central differences are used for the discretization of the second-order derivatives of the viscous 
terms. For the cross-derivatives an ‘upwind’-type scheme25 is used. 
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